

HP Unified Mediation Bus

Unified Mediation Bus

Version 1.0

Installation and Configuration Guide

Edition: 1.1

For the HP-UX (11.31), Linux (RHEL 6.5) and Windows© Operating Systems

October 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2012®, Windows XP®, and
Windows 7® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Hazelcast™ is a trademark of Hazelcast Inc.

Apache Kafka™ is a trademark of the Apache Software Foundation.

Apache ZooKeeper™ is a trademark of the Apache Software Foundation.

Apache Bigtop™ is a trademark of the Apache Software Foundation.

3

Contents
Preface ... 7

Chapter 1... 9

Introduction .. 9

Overview ... 9

Chapter 2... 11

Unified Mediation Bus Server .. 11

2.1 Licensing .. 11
2.2 UMB Server configurations overview ... 11
2.3 Pre-installation tasks .. 12
2.3.1 Java ... 12
2.3.2 Create UMB administration User ‘hpossadm’ ... 12
2.4 UMB zookeeper installation ... 13
2.4.1 Disk requirements .. 13
2.4.2 UMB Server zookeeper package installation ... 13
2.4.3 Un-installation of UMB Server ZooKeeper package .. 19
2.5 UMB Kafka installation ... 19
2.5.1 UMB Server kafka package installation ... 19
2.5.2 Un-installation of UMB Server Kafka package ... 25
2.6 Configuring UMB server for production environment ... 25
2.6.1 Configuring ZooKeeper in a Production Environment ... 25
2.6.2 Make the Kafka Broker Redundant .. 27

Chapter 3... 28

Unified Mediation Bus Adapters .. 28

3.1 Licensing .. 28
3.2 Installation pre-requisites ... 28
3.2.1 Java ... 28
3.2.2 Admin user creation ... 29
3.3 Unified Mediation Bus Runtime Package installation .. 29
3.3.1 Product installation .. 29
3.3.2 Disk requirements for the UMB runtime .. 30
3.3.3 Files organization ... 31
3.3.4 Setting the Unified Mediation Bus Runtime environment variable (Unix only) ... 31
3.3.5 Un-installation of a Unified Mediation Bus Runtime .. 32
3.4 Unified Mediation Bus Adapters installation ... 32
3.4.1 Product installation .. 32
3.4.2 Disk requirements for an UMB adapter .. 33
3.4.3 Files organization ... 33
3.4.4 Ports used ... 34
3.4.5 Setting the Unified Mediation Bus Adapter environment variables (Unix only) .. 34
3.4.6 Starting and stopping a Unified Mediation Bus Adapter 35
3.4.7 Un-installation of a Unified Mediation Bus Adapter .. 35

4

3.5 Unified Mediation Bus Adapters configuration .. 35
3.5.1 AdapterConfiguration.xml file ... 35
3.5.2 adapter.properties file ... 36
3.5.3 hazelcast.xml file ... 41
3.5.4 log4j.xml file ... 43
3.6 TeMIP Adapter Specific configuration.. 44
3.6.1 TeMIP Adapter Installation ... 45
3.6.2 TeMIP Adapter Configuration ... 45
3.7 OSSAF Adapter ... 54
3.7.1 Specific properties .. 54
3.7.2 Specific configuration ... 54
3.7.3 Deploying OSSAF Adapter as an EJB .. 57
3.7.4 Writing an OSSAF Adapter client .. 57
3.8 UCA-EBC Adapter specific configuration.. 58
3.8.1 UCA-EBC Adapter Configuration ... 59
3.8.2 UCA-EBC value pack configurations ... 61
3.8.3 Configuring a value pack for collecting events from an UMB flow 61
3.8.4 Forwarding Alarms to UMB through Static flows ... 62
3.8.5 Forwarding Alarms to UMB through Dynamic flows .. 63

Chapter 4... 64

Unified Mediation Bus Adapter Development Kit... 64

4.1 Licensing .. 64
4.2 Disk requirements .. 64
4.3 Software prerequisites .. 64
4.3.1 Java ... 64
4.4 Unified Mediation Bus Adapter Development Kit installation 66
4.4.1 Product Installation .. 66
4.4.2 Files organization ... 68
4.4.3 Setting the Unified Mediation Bus Adapter Development Toolkit environment

variables (Linux only) ... 69
4.5 Un-installation of UMB Adapter Development Kit ... 69

Chapter 5... 70

Code Signing .. 70

5.1 On Red Hat Enterprise Linux and HP-UX platforms ... 70

Glossary .. 71

5

Figures

Figure 1 - Unified Mediation Bus architecture overview .. 10
Figure 2 - Example of AdapterConfiguration.xml file .. 36
Figure 3 - Example of adapter.properties file ... 41
Figure 4 - Example of hazelcast.xml file ... 43
Figure 5 - TeMIP adapter overview .. 45
Figure 6 - The TeMIP Adapter’s AdapterConfiguration.xml file .. 47
Figure 7 - Executing an Alarm Object directive action on TeMIP Adapter ... 49
Figure 8 - Executing a Trouble Ticket directive action on TeMIP Adapter ... 49
Figure 9 - Executing a Passthrough action on TeMIP Adapter .. 50
Figure 10 - Example of a TeMIP configuration file .. 51
Figure 11 - Example of TeMIP/TWS configuration in the TeMIP_configuration.dynamic.xml file........ 52
Figure 12 - How to query the TeMIP director entity name .. 52
Figure 13 - How to specify the Operation Context(s) in the TeMIP configuration file 52
Figure 14 - Adding a custom AO attribute in the TeMIP_configuration.dynamic.xml file..................... 53
Figure 15 - Example of an axis2.xml configuration file ... 54
Figure 16 - UCA-EBC adapter architecture ... 59
Figure 17 - Setting the JAVA_HOME environment variable on Windows systems 65
Figure 18 - Installing UMB Adapter Development Kit .. 66

6

Tables

Table 1 - Software versions ... 7
Table 2 - Software Prerequisites for UMB Server V1.0 components .. 12
Table 3 - Disk Requirements for UMB Server zookeeper component ... 13
Table 4 – ZooKeeper binary Files organization ... 15
Table 5 – ZooKeeper data files organization ... 16
Table 6 – Kafka binary Files organization .. 22
Table 7 – Kafka data files organization ... 22
Table 8 - Software Prerequisites for UMB Adapters .. 28
Table 9 - Disk Requirements for one UMB Runtime .. 31
Table 10 - Sub-directories of UMB Adapter installation directory .. 31
Table 11 - Sub-directories of UMB Adapter installation directory .. 34
Table 12 - Disk Requirements for UMB Development kit .. 64
Table 13 - Software Prerequisites for UMB Adapter Development Kit ... 65
Table 14 - Sub-directories of UMB Adapter Development Kit installation directory 68

7

Preface

This guide describes how to install the product on the various supported platforms.

Product Name: Unified Correlation Analyzer Mediation

Product Version: 1.0

Kit Version: 1.0

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UMB Server Version V1.0 Red Hat Enterprise Linux Server release 6.5

UMB Adapters Version V1.0 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release 6.5
 Windows XP / Vista 64 bits
 Windows Server 2012
 Windows 7 64 bits

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

8

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] Unified Mediation Bus - Adapter Development Guide

Support

Please visit our HP Software Support Online Web site at
www.hp.com/go/hpsoftwaresupport for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

http://www.hp.com/go/hpsoftwaresupport

9

Chapter 1

Introduction

This guide describes the installation and configuration procedures for the Unified
Mediation Bus Server, Adapters and Adapter Development Kit products.

Overview

Unified Mediation Bus allows several applications to exchange Events (and by
extension Alarms) with each other. It also provides facilities for executing actions
remotely: alarm operations (creation, grouping, deletion etc…), Trouble ticket
operations, command executions (shell scripts, java, etc…)

The Unified Mediation Bus product comes in replacement of the legacy “NGOSS
Open Mediation” product with the aim to provide:

 Better performance

 Better robustness

 Easier deployment

 Easier Adapter Development

Unified Mediation Bus is constructed around two main technologies:

 A common registry, and remote execution service implemented with the
Hazelcast® technology. Hazelcast provides both:

o a common registry feature that centralizes configuration, status
and monitoring information on all UMB Adapters that are part of
the overall UMB solution

o a distributed executor service feature that provides a framework
for executing actions on UMB Adapters across the whole UMB
solution

 A message broker based on the Kafka Technology. Apache Kafka / Apache
ZooKeeper provide a high-performance, high-availability, reliable
framework for producing and consuming collections of alarms or events
across the whole UMB solution

A typical UMB solution is composed of (see figure below):

 A UMB Server product installation, usually installed on 1 or more dedicated
UMB Server host(s), that contains Apache Kafka / Apache ZooKeeper

10

 Several UMB Adapter1 product installations (one for each Application
connected to the UMB solution). Each application has its own dedicated
UMB Adapter, usually installed on the same host as the application itself.

Figure 1 - Unified Mediation Bus architecture overview

The above figure shows UMB interconnecting 2 separate applications: Application A
and Application B.

In the figure, Hazelcast appears as a centralized component for simplification’s
sake: Hazelcast is in fact distributed across both Application A and Application B
UMB Adapters. Each of the UMB Adapters is a Hazelcast cluster member. Hazelcast
cluster members are interconnected directly, without any centralized component.
Any UMB Adapter can act as an action service provider and/or consumer:

 It provides action services for the Application that it is associated with (in
our case Application A or Application B). UMB Adapters act as proxies to
execute actions on Applications that they are associated with.

 It consumes action services from other UMB Adapters

On the other hand, Apache Kafka / Apache ZooKeeper are indeed a centralized
component. Both Application A and Application B UMB Adapters connect to the
same central component. Apache ZooKeeper provides a high performance
coordination service for the “cluster” of Apache Kafka brokers. Apache ZooKeeper
acts as a front-end to the Apache Kafka brokers. The Apache Kafka brokers provide
the messaging service: they store collections of alarms or events (sent by Kafka
producers) as Topics. Kafka consumers then retrieve the collections of alarms or
events. Any UMB Adapter can act as Kafka producer and/or Kafka consumer:

 It provides collection services for the Application that it is associated with
(in our case Application A or Application B). UMB Adapters act as proxies to
collect alarms or events from Applications that they are associated with.

 It consumes collection services from other UMB Adapters

1 UMB Adapters are developed using the UMB Adapter Development Kit. Information on

how to install the UMB Adapter Development Kit is provided in chapter: Chapter 4

11

Chapter 2

Unified Mediation Bus Server

The UMB Server product is only available on Linux. The installation procedures
described here below therefore only apply to the Linux System.

The Unified Mediation Bus Server is based on the Apache Kafka distributed
messaging system. For Kafka to work properly, it requires the installation of the
Apache ZooKeeper application which will be in charge of enabling the reliability and
coordination between the different Kafka servers.

The UMB Server product is therefore made of two different packages:

 umb-zookeeper-package-1.0-linux.tar

 umb-kafka-package-1.0-linux.tar

This chapter describes the software prerequisites, installation steps, and gives a
brief content description of the UMB Server kits.

2.1 Licensing
No extra license is required to run a Unified Mediation Bus Server.

2.2 UMB Server configurations overview
The UMB Server, through the use of Zookeeper and Kafka offers different level of
availability depending on the way it is configured.

Standalone Configuration:

The Standalone configuration is the simplest configuration for the UMB Server. With
this configuration, both ‘zookeeper’ and ‘kafka’ are installed on the same server.
These services are no replicated and as a consequence stopping one of these two
services will interrupt the overall Mediation functionality.

The configuration is suitable for demonstrations but is not recommended for a
production environment.

Highly available Configuration:

With this configuration both the zookeeper and kafka services are duplicated on
different servers.

By setting this configuration, the solution is protected against the crash of one of
the server and therefore is made highly available.

The configuration is recommended for production environment.

Refer to section 2.6 “Configuring UMB server for production environment” for
details on how to configure the UMB server for a production environement.

12

2.3 Pre-installation tasks

2.3.1 Java

Both Unified Mediation Bus Server V1.0 zookeeper and kafka components requires
the installation of a Java JRE as prerequisite.

Software Version
Java JRE/JDK 7 1.7.0.00 (or later)

Table 2 - Software Prerequisites for UMB Server V1.0 components

To check if you already have Java installed:

$ rpm –qa | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an
output similar to the following (if 1.7.0 is installed):

java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from
Oracle from http://java.com/en/download/manual.jsp. If this is installed (usually
under /usr/java), you should get an output similar to the following:

jdk-1.7.0_51-fcs

2.3.2 Create UMB administration User ‘hpossadm’

Notes

 This step is not mandatory if you install UMB Server V1.0 components as a non-
root user. In such case the user that you use for installing the packages will
become the administration user for UMB.

 When installing as root, an ’hpossadm’ user must be created on the system, you
can creat it with the following instructions, or ask your system administrator to
create it according to your compagny policies. If the ’hpossadm’ user is not
created before UMB packages installation, the installation script will create it
for you, using basic settings.

The local “hpossadm” user account must have a ${HOME} directory containing at
least a .login or a .profile file.

The following super user command should create an acceptable “hpossadm” user:

$ useradd -g <your hpossadm group name here> -m -d

/home/hpossadm -s /bin/bash hpossadm

http://java.com/en/download/manual.jsp

13

2.4 UMB zookeeper installation

2.4.1 Disk requirements

Here are the disk requirements for UMB Server zookeeper component:

Type Disk requirements

Installation time
temporary disk space

20 MB minimum:

 10 MB minimum for the umb-zookeeper-
package-1.0-linux.tar file

 10 MB minimum for installation files
(expanded from the umb-zookeeper-
package-1.0-linux.tar file)

Permanent disk space 10 MB minimum for UMB Server V1.0 installed
on the system

Table 3 - Disk Requirements for UMB Server zookeeper component

2.4.2 UMB Server zookeeper package installation

The current version of Zookeeper used by UMB Framework is 3.4.6.

2.4.2.1 Untar the archive in a temporary directory

Untar the archive in a temporary local directory (For example: /tmp):

$ cd /tmp

$ tar -xvf <kit location>/umb-zookeeper-package-1.0-linux.tar

The output should be as follows:
UMBzookeeper-V1.0-0A.noarch.rpm

install-umb-zookeeper.sh

$

2.4.2.2 Run the installation script

As root user, run the package installation script:

$ install-umb-zookeeper.sh

This command installs the package by default in the /opt/UMB/zookeeper

directory and stores the zookeeper data part in the
/var/opt/UMB/zookeeper directory.

The following options can be specified for changing these default values:

-r root_directory : Specifies a valid Unified Mediation Bus zookeeper Root Directory
(default=/opt/UMB/zookeeper)

14

-d data_directory : Specifies a valid Unified Mediation Bus zookeeper Data
Directory (default=/var/opt/UMB/zookeeper)

Note

When installed as root user the following is performed during installation

 A ’hpossadm’ user is automatically created if not already there on the
system. In case of automatic creation a password must be assigned to the
created user in order to be able to log in. As root user, use the ’passwd

hpossadm’ command to change the password.

 A linux ’zookeeper’ service is created in order to ease the monitoring and

offer the possibility to automatically start the service on boot.

Installing UMB Server ZooKeeper package as non-root user:

For testing purposes (or for some very specific needs) the UMB Server ZooKeeper
package can be installed by a non-root user (Note that this is not the recommended
way for installing this package).

When installing UMB Server ZooKeeper package as non-root user, the following
limitations must be understood and acknowledged:

 The system RPM database is not accessible by a non-root user. As a
consequence, when installation is performed by a non-root user, a specific RPM
database must be specified. The default RPM repository for non-root
installation is set to ~/.rpmdb (where ~ is the user home directory). This
directory can be overridden by specifying the –-rpmdbpath option as
installation script argument.

 The UMB Server ZooKeeper package binary and data directories must be
read/write accessible by the non-root user. Usually the default
/opt/UMB/zookeeper and /var/opt/UMB/zookeeper directories cannot be used
(unless some specific rights have been set by the administrator). As a
Consequence, when installation is performed by a non-root user, the –r and –d
options must be specified.

 When installed by the non-root users the UMB Server ZooKeeper binaries and
scripts will only be executable by the user who did perform the installation. As a
consequence UMB Server ZooKeeper administration (start/stop/status) has to
be executed with this user (and not as ‘uca’ user as stated in the
documentation)

 Finally the ZooKeeper linux service will not be created. As a consequence it will
not be possible to use the ”automatic start on boot” as described in section
2.4.2.7

2.4.2.3 Starting and stopping ZooKeeper

From the package installation bin directory (default
/opt/UMB/zookeeper/bin):

Starting Zookeeper:

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
zookeeper start

Checking ZooKeeper status:

15

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
zookeeper status

Stopping ZooKeeper service:

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
zookeeper stop

When installed as root user, the UMB Server ZooKeeper component can be started
as a Linux service.

Starting ZooKeeper service:

As root user
/sbin/service zookeeper start

Checking zooKeeper service status:

As root user
/sbin/service zookeeper status

Stopping zooKeeper service:

As root user
/sbin/service zookeeper stop

2.4.2.4 Files organization

The UMB Server zookeeper binary files are installed in the root directory specified
at installation (by default /opt/UMB/zookeper)

The following table describes the different sub-directories of ZooKeeper binary
part:

Directories Description

default Contains default configuration files

usr/bin Contains ZooKeeper command-line scripts

usr/sbin Contains additional ZooKeeper command-
line scripts

usr/share/zookeeper Contains the ZooKeeper libraries

Table 4 – ZooKeeper binary Files organization

The following table describes the different sub-directories of ZooKeeper data part
(by default /var/opt/UMB/zookeeper):

Directories Description

config Contains customized configuration files

16

Directories Description

lib/data Contains the ZooKeeper runtime data

log Contains ZooKeeper log files (traces)

run Contains ZooKeeper pid file

Table 5 – ZooKeeper data files organization

2.4.2.5 TCP ports used by ZooKeeper

ZooKeeper uses the following TCP ports:

 2181 by default (see the clientPort property in the zoo.cfg file
located by default in the /var/opt/UMB/zookeeper/config folder):

used for client connections

Additionally, if ZooKeeper is running in highly available configuration (i.e. there is
more than 1 ZooKeeper node in the ensemble), it uses the following extra TCP
ports:

 2888 by default (see the server.<server number> property in the

zoo.cfg file): used for followers/quorum connections

 3888 by default (see the server.<server number> property in the

zoo.cfg file): used for leader election connections

In the zoo.cfg file, the entries of the form server.<server number> list

the servers that make up the ZooKeeper service. When the server starts up, it
knows which server it is by looking for the file myid file in the ZooKeeper data

directory: /var/opt/UMB/zookeeper/lib/data/myid. This file contains

the server number, in ASCII.

The format for the server.<server number> property is the following:

server.<server number>=<server host name>:<followers

port>:<leader election port>

For example: server.1=host1:2888:3888

The two port numbers after each server name: 2888 and 3888. Peers use the

former port to connect to other peers. Such a connection is necessary so that peers
can communicate, for example, to agree upon the order of updates. More
specifically, a ZooKeeper server uses this port to connect followers to the leader.
When a new leader arises, a follower opens a TCP connection to the leader using
this port. Because the default leader election also uses TCP, we currently require
another port for leader election. This is the second port in the server entry.

Note

In the case of multiple servers on a single machine (this configuration is not
recommended in a production environment), please specify the server host

name as localhost with unique quorum & leader election ports (i.e.
2888:3888, 2889:3889, 2890:3890 in the example above) for each

server.<server number> in that server's configuration file. Of course
separate dataDir and distinct clientPort values are also necessary (in the

above replicated example, running on a single localhost, you would still have three
configuration files).

17

2.4.2.6 Red Hat Linux firewall settings

As detailed above, UMB Server ZooKeeper functionality uses some ports that need
to be open on the firewall in order for ZooKeeper and Kafka to run properly. Please
see chapter 2.4.2.5 “TCP ports used by ZooKeeper” for more information on the
ports2 used by ZooKeeper.

Let’s suppose we have the default iptables configuration file, like the following:

cat /etc/sysconfig/iptables

Firewall configuration written by system-config-firewall

Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j

ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

You will need to add filters to your current iptables settings to open ports used

by each ZooKeeper instance that are part of your UMB Server setup.

By default, 3 chains are used: INPUT, OUTPUT, FORWARD. Please refer to the Red
Hat Linux guide for a better understanding of what a chain is and what the packet
matching rules are.

Here we are going to create a new custom INPUT chain, dedicated to managing UMB
ZooKeeper ports.

Let’s call it UMB. To do so, you will need to:

 Add 2 lines to define the UMB chain:

:UMBZookeeper - [0:0]

-A INPUT -j UMBZookeeper

 Add 1 line for each ZooKeeper instance used in your UMB Server setup:

-A UMBZookeeper -p tcp -m multiport --dports 2181,2888,3888

-m comment --comment "UMB ZooKeeper instance 1" -j ACCEPT

2 All ports used by ZooKeeper are TCP ports

18

Please make sure to use the same port numbers as the ones defined in both the
ZooKeeper zoo.conf file for every ZooKeeper instance and the Kafka

server.properties file for every Kafka Broker.

Please see below for an updated version of the configuration file (added lines are in
blue):

cat /etc/sysconfig/iptables

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [2843:756710]

: UMBZookeeper - [0:0]

-A INPUT -j UMBZookeeper

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j

ACCEPT

-A UMBZookeeper -p tcp -m multiport --dports 2181,2888,3888 -m

comment --comment "UMB ZooKeeper instance 1" -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Then, you need to validate your settings using the iptables command or the

iptables service.

service iptables restart

iptables: Flushing firewall rules: [OK]

iptables: Setting chains to policy ACCEPT: filter [OK]

iptables: Unloading modules: [OK]

iptables: Applying firewall rules: [OK]

And then you need to check that your new UMBZookeeper settings are up and
running:
iptables --list UMBZookeeper

Chain UMB (1 references)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere

multiport dports 2181,2888,3888 /* UMB ZooKeeper instance 1 */

Please make sure to open the ports for all ZooKeeper instances and Kafka brokers
running on your server.

If everything is OK, please save your configuration so that it is taken into account
after a reboot:

service iptables save

iptables: Saving firewall rules to /etc/sysconfig/iptables:[

OK]

2.4.2.7 Auto-starting Zookeeper service on boot

When installed has root user, the UMB Server ZooKeeper package also install the
‘zookeeper’ service. As any other services, the zookeeper service can be auto-
started on boot.

 Become as root user on your Linux server

19

 Add script to start on boot using chkconfig utility:

$ chkconfig --add zookeeper

$ chkconfig zookeeper on

 Confirm script is added using chkconfig utility

$ chkconfig --list zookeeper

zookeeper 0:off 1:off 2:on 3:on 4:on 5:on 6:off

$

2.4.3 Un-installation of UMB Server ZooKeeper package

In order to un-install UMB Server ZooKeeper package, you first need to stop
ZooKeeper service:

Stop ZooKeeper:
zookeeper stop

or stop zookeeper service when zookeeper is started as a service:
service zookeeper stop

Once ZooKeeper service is stopped, you then need to un-install the UMB Server
ZooKeeper rpm packages:

$ rpm –e UMBzookeeper-V1.0-0A

2.5 UMB Kafka installation

2.5.1 UMB Server kafka package installation

The current version of Kafka used by UMB Framework is 0.8.2.0.

2.5.1.1 Untar the archive in a temporary directory

Untar the archive in a temporary local directory (For example: /tmp):

$ cd /tmp

$ tar -xvf <kit location>/umb-kafka-package-1.0-linux.tar

The output should be as follows:
UMBkafka-V1.0-0A.noarch.rpm

install-umb-kafka.sh

$

20

2.5.1.2 Run the installation script

As root user, run the package installation script:

$ install-umb-kafka.sh

This command installs the package by default in the /opt/UMB/kafka directory
and stores the kafka data part in the /var/opt/UMB/kafka directory.

The following options can be specified for changing these default values:

-r root_directory : Specifies a valid Unified Mediation Bus kafka Root Directory
(default=/opt/UMB/kafka)

-d data_directory : Specifies a valid Unified Mediation Bus kafka Data Directory
(default=/var/opt/UMB/kafka)

Note

When installed a root user the following is performed during installation

 A ’hpossadm’ user is automatically created if not already there on the
system. In case of automatic creation a password must be assigned to the
created user in order to be able to log in. As root user, use the ’passwd

hpossadm’ command to change the password.

 a linux ’kafka’ service is created in order to ease the monitoring and offer the
possibility to automatically start the service on boot.

Installing UMB Server kafka package as non-root user:

For testing purpose (or for some very specific needs) the UMB Server kafka package
can be installed by a non-root user (Note that this is not the recommended way for
installing this package).

When installing UMB Server kafka package as non-root user, the following
limitations must be understood and acknowledged:

 The system RPM database is not accessible by a non-root user. As a
consequence, when installation is performed by a non-root user, a specific RPM
database must be specified. The default RPM repository for non-root
installation is set to ~/.rpmdb (where ~ is the user home directory). This
directory can be overridden by specifying the –-rpmdbpath option as
installation script argument.

 The UMB Server kafka package binary and data directories must be read/write
accessible by the non-root user. Usually the default /opt/UMB/kafka and
/var/opt/UMB/kafka directories cannot be used (unless some specific rights
have been set by the administrator). As a Consequence, when installation is
performed by a non-root user, the –r and –d options must be specified.

 When installed by the non-root users the UMB Server kafka binaries and scripts
will only be executable by the user who did perform the installation. As a
consequence UMB Server kafka administration (start/stop/status) has to be
executed with this user (and not as ‘uca’ user as stated in the documentation)

 Finally the kafka linux service will not be created. As a consequence it will not be
possible to use the ”automatic start on boot” as described in section 2.5.1.7

21

2.5.1.3 Starting and stopping kafka

From the package installation bin directory (default /opt/UMB/kafka/bin):

Starting kafka:

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
kafka start

Checking kafka status:

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
kafka status

Stopping kafka service:

As ‘hpossadm’ user (or from the user who did the installation in case of non-root
installation)
kafka stop

When installed as root user, the UMB Server kafka component can be started as a
Linux service.

Note:

Before applying the here below commands, the following modification must be
performed:

Edit the file /etc/rc.d/init.c/kafka

Add the following line at the top of the file :

chkconfig: 2345 89 9

The file header should look like:

Kafka

chkconfig: 2345 89 9

description: kafka

Starting kafka service:

As root user
/sbin/service kafka start

Checking kafka service status:

As root user
/sbin/service kafka status

Stopping kafka service:

As root user

22

/sbin/service kafka stop

2.5.1.4 File organization

The UMB Server kafka binary files are installed in the root directory specified at
installation (by default /opt/UMB/kafka)

The following table describes the different sub-directories of Kafka binary part:

Directories Description

bin Contains the Kafka shell scripts

defaults Contains default configuration files

libs Contains the Kafka libraries

logs Contains the Kafka log files

Table 6 – Kafka binary Files organization

The following table describes the different sub-directories of Kafka data part (by
default /var/opt/UMB/kafka):

Directories Description

config Contains customized configuration files

kafka-logs Contains the Kafka data files

logs Contains Kafka log files (traces)

run Contains Kafka pid file

Table 7 – Kafka data files organization

2.5.1.5 TCP ports used by Kafka

Kafka uses the following TCP ports:

 9092 by default (see the port property in the server.properties file

located by default in the /var/opt/UMB/kafka/config folder): used

by the Kafka broker

In case of multiple-broker configuration, each Kafka broker has its own
server.properties configuration file that defines the port property that

contains the port number used by the broker.

Note

In the case of multiple Kafka brokers on a single machine (this configuration is not
recommended in a production environment), please specify different value for the
port property for each Kafka broker. In this case, it is customary to just increase
the port number by 1 for each additional Kafka broker. For example: port 9093 for

Kafka broker 2, 9094 for Kafka broker 3, etc…

23

2.5.1.6 Red Hat Linux firewall settings

UMB Server kafka component uses some ports that need to be open on the firewall
in order for ZooKeeper and Kafka to run properly. Please see chapter 2.5.1.5 “TCP
ports used by Kafka” for more information on the ports3 used by Kafka.

Let’s suppose we have the default iptables configuration file, like the following:

cat /etc/sysconfig/iptables

Firewall configuration written by system-config-firewall

Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j

ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

You will need to add filters to your current iptables settings to open ports used

by each ZooKeeper instance and each Kafka broker that are part of your UMB Server
setup.

By default, 3 chains are used: INPUT, OUTPUT, FORWARD. Please refer to the Red
Hat Linux guide for a better understanding of what a chain is and what the packet
matching rules are that apply within a chain.

Here we are going to create a new custom INPUT chain, dedicated to managing UMB
ports.

Let’s call it UMBKafka. To do so, you will need to:

 Add 2 lines to define the UMBKafka chain:

:UMBKafka - [0:0]

-A INPUT -j UMBKafka

 Add 1 line for the Kafka broker:

-A UMBKafka -p tcp -m tcp --dport 9092 -m comment --comment

"UMB Kafka broker 1" -j ACCEPT

Please make sure to use the same port number as the ones defined in the Kafka
server.properties file.

3 All ports used by Kafka are TCP ports

24

Please see below for an updated version of the configuration file (added lines are in
blue):

cat /etc/sysconfig/iptables

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [2843:756710]

:UMBKafka - [0:0]

-A INPUT -j UMBKafka

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j

ACCEPT

-A UMBKafka -p tcp -m tcp --dport 9092 -m comment --comment

"UMB Kafka broker 1" -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Then, you need to validate your settings using the iptables command or the

iptables service.

service iptables restart

iptables: Flushing firewall rules: [OK]

iptables: Setting chains to policy ACCEPT: filter [OK]

iptables: Unloading modules: [OK]

iptables: Applying firewall rules: [OK]

And then you need to check that your new UMBKafka settings are up and running:
iptables --list UMBKafka

Chain UMBKafka (1 references)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere

tcp dpt:9092 /* UMB Kafka broker 1 */

If everything is OK, please save your configuration so that it is taken into account
after a reboot:

service iptables save

iptables: Saving firewall rules to /etc/sysconfig/iptables:[

OK]

2.5.1.7 Auto-starting kafka service on boot

When installed has root user, the UMB Server kafka package also install the ‘kafka’
service. As any other services, the kafka service can be auto-started on boot.

 Become as root user on your Linux server

 Add script to start on boot using chkconfig utility:

$ chkconfig --add kafka

$ chkconfig kafka on

 Confirm script is added using chkconfig utility

$ chkconfig --list kafka

kafka 0:off 1:off 2:on 3:on 4:on 5:on 6:off

25

$

2.5.2 Un-installation of UMB Server Kafka package

In order to un-install UMB Server Kafka package, you first need to stop Kafka
service:

Stop Kafka:
service kafka stop

Once Kafka service is stopped, you then need to un-install the UMB Server Kafka
rpm packages:

$ rpm –e UMBkafka-V1.0-0A

2.6 Configuring UMB server for production environment
Production environments usually require Fault Tolerance mechanisms to be put in
place in order to prevent service disruption in case of a system crash.

For the UMB server this means two things:

1. Implement a ZooKeeper Cluster

2. Make the Kafka broker redundant

2.6.1 Configuring ZooKeeper in a Production Environment

For use in a production environment, ZooKeeper should be deployed as an
ensemble with an odd number of nodes. As long as a majority of the servers in the
ensemble are available, the ZooKeeper service will be available. The minimum
recommended ensemble size is three ZooKeeper servers, and it is recommended
that each server run on a separate machine.

It is recommended to run at least three ZooKeeper nodes on three separate
machines to meet the high availability requirements. If there are sufficient
resources, it is recommended to run five ZooKeeper nodes, which allows one node
to be taken down for planned maintenance without affecting the availability.

ZooKeeper deployment on multiple servers requires a bit of additional
configuration. The configuration file (zoo.cfg) on each server must include a list
of all servers in the ensemble, and each server must also have a myid file in its

data directory (by default: /var/opt/UMB/zookeeper/lib/data) that

identifies it as one of the servers in the ensemble.

The ids of the ZooKeeper servers must be unique in the ensemble. Each ZooKeeper
is to be installed on a separate server.

ZooKeeper's behavior is governed by the ZooKeeper configuration file. This file is
designed so that the exact same file can be used by all the servers that make up a
ZooKeeper ensemble assuming the disk layouts are the same. If servers use
different configuration files, care must be taken to ensure that the list of servers in
all of the different configuration files match.

26

Assign each ZooKeeper instance an Identifier

Each ZooKeeper server is identified by an identifier. This identifier is stored in the
file ‘myid’ in the ZooKeeper’s data directory (default:
/var/opt/UMB/zookeeper/lib/data.

You can assign this identifier by means of an init command option of the
zookeeper shell script:

$ zookeeper init 1

This will give this ZooKeeper instance the identifier ‘1’.

Configure the servers in order they know each other’s

For the different servers part of the ZooKeeper cluster to be able to cooperate they
must know each other’s.

This is done by adding neighborhood references to each server configuration in the
server configuration file zoo.cfg.

Imagine that the ZooKeeper cluster is made of tree members running on host1,
host2 and host3

The zookeeper identifier given to each member is respectively 1, 2 and 3.

The configuration file of each member must then be augmented with the following
properties:

server.1=host1:2888:3888

server.2=host2:2888:3888

server.3=host3:2888:3888

Change the Kafka server configuration in order for it to use the
Zookeeper cluster configuration

The Kafka broker is aware of the Zookeeper configuration through the
zookeeper.connect property which defines the zookeeper connection string.

In case of a Zookeeper Cluster configuration, the Connection String is defined with a
coma separated list of Zookeeper URLs as follow:
Zookeeper connection string (see zookeeper docs for details).

This is a comma separated host:port pairs, each corresponding to a zk

server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".

You can also append an optional chroot string to the urls to specify

the

root directory for all kafka znodes.

zookeeper.connect=host1:2181,host2:2181,host3:2181

Change the adapter’s configurations in order for them to use the
Zookeeper cluster configuration

Each adapter consuming events must define a Zookeeper connection String
through the property consumer.zookeeper.connect in the
adapter.properties file.

In case of a Zookeeper Cluster configuration, the Connection String is defined with a
coma separated list of Zookeeper URLs as follow:

27

consumer.zookeeper.connect=host1:2181,host2:2181,host3:2181

2.6.2 Make the Kafka Broker Redundant

In order to secure the Kafka Broker’s data, such data must be replicated.

This is done by defining two or more Kafka Brokers on which the UMB topics are
replicated. The servers must be located on different systems.

On each of these brokers the Kafka configuration file (default:
/var/opt/UMB/kafka/config/server.properties) must be changed

as follow:

Assign each Kafka instance a unique Identifier

This is done by setting the broker.id property to a unique value

Example:

On the first Kafka broker
The id of the broker. This must be set to a unique integer

for each broker.

broker.id=1

On the second Kafka broker
The id of the broker. This must be set to a unique integer

for each broker.

broker.id=2

Set the Default replication factor

On each broker sets the default.replication.factor property to a value

of 2 (when two brokers are configured) or 3 if more than two brokers are
configured.
default.replication.factor=2

Set the Zookeeper connection String

On each broker sets the zookeeper.connect property to a value similar to the

one from the ZooKeeper Cluster setting

Example:
zookeeper.connect=host1:2191,host2:2181,host3:2181

Change the adapter’s configurations in order for them to use the
Kafka cluster configuration

Each adapter producing events must define a broker connection String through the
property producer.metadata.broker.list in the adapter.property

file.

In case of a Kafka redundancy configuration, the broker list is defined with a coma
separated list of Kafka URLs as follow:

Example:
producer.metadata.broker.list=host1:9092,host2:9092

28

Chapter 3

Unified Mediation Bus Adapters

Unified Mediation Bus Adapters are the intermediate processes that insure
connectivity and data conversion between applications connected through the
Unified Mediation Bus. A Unified Mediation Bus Adapter can be separate from
(external) or embedded into the 3rd party application.

When embedded, the 3rd party application is itself an adapter (this is the case for
UCA-EBC for example).

When external, the adapter is delivered as a separate installable package
(examples: Exec Adapter, TeMIP Adapter, File Adapter, Camel Adapter, etc…

A Unified Mediation Bus Adapter can be installed both on HP-UX or Linux systems.

This chapter gives details on how to install and configure Unified Mediation Bus
Adapters.

3.1 Licensing
No extra license is required to run the Unified Mediation Bus Adapters.

Note

Please refer to Chapter 2.1 “Licensing” for more information on UMB licensing.

3.2 Installation pre-requisites

3.2.1 Java

Unified Mediation Bus V1.0 Adapter requires Java 1.7.
Software Version
Java JRE/JDK 7 1.7.0.00 (or later)

Table 8 - Software Prerequisites for UMB Adapters

On HP-UX:

To check if you already have Java installed:

$ swlist | grep Java

You should get an output similar to the following:

Java70JRE 1.7.0.10.00 Java 7.0 JRE for HP-UX

29

The latest JDK package for HP-UX can be downloaded (for free) from
www.hp.com/go/java.

It is usually installed in the /opt/java7 folder.

On Linux:

To check if you already have Java installed:

$ rpm –qa | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an
output similar to the following (if 1.7.0 is installed):

java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from
Oracle from http://java.com/en/download/manual.jsp. If this is installed (usually
under /usr/java), you should get an output similar to the following:

jdk-1.7.0_51-fcs

3.2.2 Admin user creation
Before installing a UMB Adapter on a system, you need to create a local
"hpossadm” user account on that system.

The local “hpossadm” user account must have a ${HOME} directory containing at

least a .login or a .profile file (in order to set the UMB Adapter environment

variables inside either of these files).4

The following super user command should create an acceptable “hpossadm” user:

On HP-UX:

$ useradd -g <your hpossadm group name here> -m -d

/home/hpossadm -s /bin/csh hpossadm

On Linux:

$ useradd -g <your hpossadm group name here> -m -d

/home/hpossadm -s /bin/bash hpossadm

3.3 Unified Mediation Bus Runtime Package installation

3.3.1 Product installation

Before installing a UMB Adapter on a system, you need to install the UMB Runtime
package used by all adapters. The installed package contains all common libraries
and UMB framework library.

4 Please see chapter 3.4.5 “Setting the Unified Mediation Bus Adapter environment

variables (Unix only)” for more information on how to set these variables.

http://www.hp.com/go/java
http://java.com/en/download/manual.jsp

30

The installation procedure is as described below.

3.3.1.1 Un-tar the archive in a temporary directory

As root user, un-tar the UMB Runtime archive file under a temporary local directory
(For example: /tmp):

On HP-UX:

$ cd /tmp

$ tar -xvf <kit location>/umb-runtime-package-1.0-hpux.tar

On Linux:

$ cd /tmp

$ tar -xvf <kit location>/umb-runtime-package-1.0-linux.tar

3.3.1.2 Run the installation script

Still as root user, run the package installation script:

On both HP-UX and Linux:

$ install-umb-runtime.sh

This command installs the package by default in the /opt/UMB.

The following options can be specified for changing this default value:

-r root_directory : Specifies a valid Unified Mediation Bus Root Directory
(default=/opt/UMB)

Note

Installing a UMB Runtime as non-root user (Linux only):

For testing purpose (or for some very specific needs) the UMB Runtime package can
be installed by a non-root user. This feature is available for Linux only.

When installing a UMB Runtime as non-root user, the following limitations must be
understood and acknowledged:

1. The system RPM database is not accessible by a non-root user. As a
consequence, when installation is performed by a non-root user, a specific RPM
database must be specified. The default RPM repository for non-root
installation is set to ~/.rpmdb (where ~ is the user home directory).
This directory can be overridden by specifying the --rpmdbpath option as

installation script argument.

2. The UMB root directory must be read/write accessible by the non-root user. As a
Consequence, when installation is performed by a non-root user, the –r and –o

options must be specified. More over this user must be the same as the one who
installed the OSS Open Mediation packages.

3. When installed by a non-root user the UMB Runtime files are owned by the user
who performed the installation.

3.3.2 Disk requirements for the UMB runtime

Here are the minimum disk requirements for each UMB Runtime kit:

31

Type Disk requirements

Installation time
temporary disk space

44 MB minimum in a temporary directory:

 22 MB minimum for the delivered tar file

 22 MB minimum for the extracted files (installer and
package)

Permanent disk space 25 MB minimum in the installation directory
(by default /opt/UMB)

Table 9 - Disk Requirements for one UMB Runtime

3.3.3 Files organization

The UMB Runtime is installed in the root directory specified at installation (by
default /opt/UMB

The following table describes the different sub-directories contained in the
delivery:

Table 10 - Sub-directories of UMB Adapter installation directory

3.3.4 Setting the Unified Mediation Bus Runtime environment
variable (Unix only)

An environment variable must be defined for the installed UMB Runtime to work
properly:

 The ${UMB_RUNTIME_HOME} environment variable references the root

directory of the UMB Runtime (default value = /opt/UMB)

Additionally the user’s path must be upgraded with the
${UMB_RUNTIME_HOME}/bin directory

For that purpose, the UMB Runtime installation script installs two files in the UMB
HOME directory (/opt/UMB by default):

 .adapter_environment.sh

 .adapter_environment.csh

These files can be used for setting the correct environment variables.

Depending on your shell, use one of the following commands to set the
“hpossadm” user’s UMB environment variables and update the path:

On csh-like shell:

$ source /opt/UMB/<adapter name>/.adapter_environment.csh

Directory Description

<Adaptername>/bin Contains the UMB runtime scripts

<Adaptername>/license Contains the UMB runtime license file.

<Adaptername>/lib Contains the UMB Framework libraries

32

On sh-like shell:

$. /opt/UMB/<adapter name>/.adapter_environment.sh

It is recommended to execute either of these commands inside the .login or
.profile file of the local “hpossadm” user account so that the UMB Runtime

environment is always correctly set for this user.

3.3.5 Un-installation of a Unified Mediation Bus Runtime

3.3.5.1 On Linux

$ rpm –e UMBRUNTIME-V1.0-0A

3.3.5.2 On Windows

1. Go to the Control Panel

2. Select “Program and Features”

3. Right-click on “HP Unified Mediation Bus Runtime for Adapters –
UMBRUNTIME-V1.0-0A”

4. Select “Uninstall”

3.4 Unified Mediation Bus Adapters installation

3.4.1 Product installation

The installation procedure is identical for any (HP delivered) UMB Adapter. The Exec
Adapter will be taken as an example in the sections below.

3.4.1.1 Un-tar the archive in a temporary directory

As root user, un-tar the UMB Adapter archive file under a temporary local directory
(For example: /tmp):

On HP-UX:

$ cd /tmp

$ tar -xvf <kit location>/umb-exec-adapterpackage-1.0-hpux.tar

On Linux:

$ cd /tmp

$ tar -xvf <kit location>/umb-exec-adapterpackage-1.0-linux.tar

33

3.4.1.2 Run the installation script

Still as root user, run the package installation script:

On both HP-UX and Linux:

$ install-<Adaptername>-adapter.sh

This command installs the package by default in the
/opt/UMB/<Adaptername> directory and stores the configuration files in the
/var/opt/UMB/<Adaptername>/conf directory.

The following options can be specified for changing these default values:

-r root_directory : Specifies a valid Unified Mediation Bus Root Directory
(default=/opt/UMB)

-d data_directory : Specifies a valid Unified Mediation Bus Data Directory
(default=/var/opt/UMB)

Note

Installing a UMB Adapter as non-root user (Linux only):

For testing purpose (or for some very specific needs) the UMB Adapter package can
be installed by a non-root user. This feature is available for Linux only.

When installing a UMB Adapter as non-root user, the following limitations must be
understood and acknowledged:

4. The system RPM database is not accessible by a non-root user. As a
consequence, when installation is performed by a non-root user, a specific RPM
database must be specified. The default RPM repository for non-root
installation is set to ~/.rpmdb (where ~ is the user home directory).

This directory can be overridden by specifying the --rpmdbpath option as

installation script argument.

5. The UMB Adapter root directory must be read/write accessible by the non-root
user. As a Consequence, when installation is performed by a non-root user, the
–r and –o options must be specified. More over this user must be the same as

the one who installed the OSS Open Mediation packages.

6. When installed by a non-root user the UMB Adapter files are owned by the user
who performed the installation.

3.4.2 Disk requirements for an UMB adapter

An UMB adapter package provides only libraries and scripts that are specific to this
adapter. This can be very small (Ex: 40 KB for the Exec adapter) or bigger if the
adapter depends on some specific libraries for connectivity (Ex: the TeMIP adapter
is up to 27 MB).

3.4.3 Files organization

The UMB Adapter is installed in the root directory specified at installation (by
default /opt/UMB/<AdapterName>

The following table describes the different sub-directories contained in the
delivery:

34

Table 11 - Sub-directories of UMB Adapter installation directory

3.4.4 Ports used

Hazelcast

Hazelcast uses the following TCP ports:

 5701 by default (see the <network><port>…</port></network>

section in the hazelcast.xml file of the UMB Adapter located by
default in the /var/opt/UMB/<AdapterName>/conf folder): used

for connecting to other Hazelcast cluster members

If the port set in the hazelcast.xml file is already in use, then Hazelcast will try
to use the next available port: 5702, or 5703, or 5704, … for example.

3.4.5 Setting the Unified Mediation Bus Adapter environment
variables (Unix only)

Several environment variables must be defined for the installed UMB Adapter to
work properly:

 The ${UMB_<adapter name in upper case>ADAPTER_HOME}

environment variable (for example: ${UMB_FILEADAPTER_HOME}):

references the root directory (“static” part) of the UMB Adapter (default
value = /opt/UMB/<adapter name>-adapter)

 The ${UMB_<adapter name in upper case>ADAPTER_DATA}

environment variable (for example: ${UMB_FILEADAPTER_DATA}):

references the data directory (“variable” part) of the UMB Adapter
(default value = /var/opt/UMB/<adapter name>-adapter)

For that purpose, the UMB Adapter installation script installs two files in the UMB
HOME directory (/opt/UMB/<adapter name> by default):

 .adapter_environment.sh

 .adapter_environment.csh

These files can be used for setting the correct environment variables.

Depending on your shell, use one of the following commands to set the
“hpossadm” user’s UMB environment variables and update the path:

On csh-like shell:

$ source /opt/UMB/<adapter name>/.adapter_environment.csh

Directory Description

<Adaptername>/bin Contains the Adapter start script

<Adaptername>/defaults Contains the Adapter’s default configuration files.
These files are copied to the data directory
(/var/opt/UMB/<Adaptername>/conf by
default) at installation time.

<Adaptername>/lib Contains the Adapter’s specific libraries

35

On sh-like shell:

$. /opt/UMB/<adapter name>/.adapter_environment.sh

It is recommended to execute either of these commands inside the .login or
.profile file of the local “hpossadm” user account so that the UMB Adapter

environment variables are always set.

3.4.6 Starting and stopping a Unified Mediation Bus Adapter

Starting an UMB adapter:
<adapter name>-adapter-start

Once the UMB adapter has started, it can be stopped by using Ctrl-C or by killing the
process associated with the UMB adapter.

3.4.7 Un-installation of a Unified Mediation Bus Adapter

On Linux:

$ rpm -qa | grep ADAPTER

UMBEXECADAPTER-1.0-0B.noarch

UMBTEMIPADAPTER-1.0-0B.noarch

UMBOSSAFADAPTER-1.0-0B.noarch

UMBLOGADAPTER-1.0-0B.noarch

UMBFILEADAPTER-1.0-0B.noarch

Choose the adapter you want to uninstall, for example the exec adapter:

$ rpm –e UMBEXECADAPTER-1.0-0B.noarch

3.5 Unified Mediation Bus Adapters configuration
The configuration files of any UMB adapter are located in the ${UMB_<adapter
name in upper case>ADAPTER_DATA}/conf folder (for example:

/var/opt/UMB/file-adapter/conf for the File adapter).

3.5.1 AdapterConfiguration.xml file

The AdapterConfiguration.xml file defines the configuration for the UMB

adapter.

It defines the following:

 Name, group and version of the UMB adapter

 Flow services that the UMB adapter provides

 Action services that the UMB adapter provides

 Automatic consumers (of flow services): flow services from other UMB
adapters that the UMB adapter consumes as soon as the UMB adapter is
started

36

Below is an example of an AdapterConfiguration.xml file:

Figure 2 - Example of AdapterConfiguration.xml file

Please refer to [R1] Unified Mediation Bus - Adapter Development Guide, chapter 3.2
“Customizing the created UMB Adapter project” for more information on:

 Customizing the Adapter name

 Adding producer collection flow services

 Adding action services

 Adding consumer collection flows

3.5.2 adapter.properties file

The adapter.properties file defines the properties for the UMB adapter. For

the most part, these properties define how to interact with the UMB Server, i.e.
ZooKeeper and Kafka.

The properties can be divided in 2 groups:

 Producer properties: these properties are prefixed with “producer.”.

These are properties that you would normally find in a Kafka
producer.properties file (without the “producer.” prefix). These

properties are used for by the producer collection flow services of the UMB
adapter.

 Consumer properties: these properties are prefixed with “consumer.”.

These are properties that you would normally find in a Kafka
consumer.properties file (without the “consumer.” prefix). These

properties are used for by the consumer collection flows of the UMB
adapter.

Please see chapter 2.5 “UMB Kafka installation” for more information on Kafka file
organisation and the location of Kafka configuration files including the
producer.properties and consumer.properties files.

37

Below is a list of all the producer properties that can be defined in the
adapter.properties file. Any valid Kafka producer property can be defined

here just by adding the “producer.” prefix:

 Producer basic properties:

o producer.metadata.broker.list: a list of Kafka broker
<host>:<port> information used for bootstrapping

knowledge about the rest of the cluster. The producer will only
use it for getting metadata (topics, partitions and replicas). The
socket connections for sending the actual data will be established
based on the broker information returned in the metadata.
Format: host1:port1,host2:port2 ... and the list can

be a subset of brokers or a VIP pointing to a subset of brokers. Set
to localhost:9092 for example

There is no default value.

o producer.producer.type: This parameter specifies whether the
messages are sent synchronously or asynchronously in a
background thread. Valid values are:

 async for asynchronous send. By setting the producer to

async we allow batching together of requests (which is

great for throughput) but open the possibility of a failure
of the client machine dropping unsent data.

 sync for synchronous send

Default value is sync.

o producer.partitioner.class: The partitioner class for partitioning
messages amongst sub-topics. The default partitioner is based on
the hash of the key:
kafka.producer.DefaultPartitioner

o producer.compression.codec: This parameter allows you to
specify the compression codec for all data generated by this
producer. Valid values are none, gzip and snappy. The old
config values work as well: 0, 1, 2 for none, gzip, snappy

respectively.

Default value is none.

o producer.compressed.topics: This parameter allows you to set
whether compression should be turned on for particular topics.

 If the compression codec is anything other than none,

enable compression only for specified topics if any. If the
list of compressed topics is empty, then enable the
specified compression codec for all topics.

 If the compression codec is none, compression is disabled

for all topics

Default value is null.

o producer.message.send.max.retries: This property will cause the
producer to automatically retry a failed send request. This
property specifies the number of retries when such failures occur.
Note that setting a non-zero value here can lead to duplicates in
the case of network errors that cause a message to be sent but
the acknowledgement to be lost.

Default value is 3 (retries).

38

o producer.retry.backoff.ms: Before each retry, the producer
refreshes the metadata of relevant topics to see if a new leader
has been elected. Since leader election takes a bit of time, this
property specifies the amount of time that the producer waits
before refreshing the metadata.

Default value is 100 (milliseconds).

o producer.topic.metadata.refresh.interval.ms: The producer
generally refreshes the topic metadata from brokers when there
is a failure (partition missing, leader not available...). It will also
poll regularly (default: every 10min so 600000ms). If you set this
to a negative value, metadata will only get refreshed on failure. If
you set this to zero, the metadata will get refreshed after each
message sent (not recommended). Important note: the refresh
happen only AFTER the message is sent, so if the producer never
sends a message the metadata is never refreshed.

Default value is 600000 (milliseconds) = 10 minutes.

 Asynchronous producer properties:

o producer.queue.buffering.max.ms: default value 5000.

Maximum time, in milliseconds, for buffering data on the producer
queue when using asynchronous mode. For example a setting of
100 will try to batch together 100ms of messages to send at

once. This will improve throughput but adds message delivery
latency due to the buffering.

o producer.queue.buffering.max.messages: default value 10000.

The maximum number of unsent messages that can be queued up
the producer when using asynchronous mode before either the
producer must be blocked or data must be dropped.

o producer.queue.enqueue.timeout.ms: default value -1. The

amount of time to block before dropping messages when running
in asynchronous mode and the buffer has reached
producer.queue.buffering.max.messages.

 If set to 0, events will be enqueued immediately or dropped
if the queue is full (the producer send call will never
block).

 If set to -1 (or –X where X is a positive integer), the
producer will block indefinitely and never willingly drop a
send.

 If set to +X (where X is a positive integer), the producer will
block up to X milliseconds if the queue is full

o producer.batch.num.messages: default value 200. The number

of messages to send in one batch when using asynchronous
mode. The producer will wait until either this number of messages
is ready to send or producer.queue.buffer.max.ms is reached.

 Synchronous producer properties:

o producer.request.required.acks: default value 0 (messages are

acknowledged). This value controls when a produce request is
considered completed. Specifically, how many other brokers must
have committed the data to their log and acknowledged this to
the leader? Typical values are:

39

 0, which means that the producer never waits for an
acknowledgement from the broker. This option provides
the lowest latency but the weakest durability guarantees
(some data will be lost when a server fails).

 1, which means that the producer gets an
acknowledgement after the leader replica has received
the data. This option provides better durability as the
client waits until the server acknowledges the request as
successful (only messages that were written to the now-
dead leader but not yet replicated will be lost).

 -1, which means that the producer gets an
acknowledgement after all in-sync replicas have received
the data. This option provides the best durability, we
guarantee that no messages will be lost as long as at
least one in sync replica remains.

o producer.client.id: default value is "". The client id is a user-

specified string sent in each request to help trace calls. It should
logically identify the application making the request.

o producer.request.timeout.ms: The amount of time the broker
will wait trying to meet the producer.request.required.acks
requirement before sending back an error to the client. Default
value is 10000 (milliseconds) = 10 seconds.

o producer.send.buffer.bytes: Socket write buffer size. Default
value is 100*1024 (bytes) = 100KB.

Please see http://kafka.apache.org/documentation.html#producerconfigs for more
details on the producer properties.

Below is a list of all the consumer properties that can be defined in the
adapter.properties file. Any valid Kafka consumer property can be defined
here just by adding the “consumer.” prefix:

 consumer.group.id: A string that uniquely identifies the group of consumer
processes to which this consumer belongs. By setting the same group id
multiple processes indicate that they are all part of the same consumer
group (used for balancing the consumption of messages among
consumers). No default value.

 consumer.zookeeper.connect: a comma separated list of ZooKeeper
<host>:<port> information, set to localhost:2181 for example.

No default value.

 consumer.consumer.id: Generated automatically if not set.

 consumer.socket.timeout.ms: The socket timeout for network requests.
The actual timeout set will be consumer.fetch.wait.max.ms +
consumer.socket.timeout.ms. Default value is 30000 (milliseconds) = 30

seconds.

 consumer.socket.receive.buffer.bytes: The socket receive buffer for
network requests. Default value is 64*1024 (bytes) = 64 KB.

 consumer.fetch.message.max.bytes: The number of bytes of messages to
attempt to fetch for each topic-partition in each fetch request. These bytes
will be read into memory for each partition, so this helps control the
memory used by the consumer. The fetch request size must be at least as

http://kafka.apache.org/documentation.html#producerconfigs

40

large as the maximum message size the server allows or else it is possible
for the producer to send messages larger than the consumer can fetch.
Default value is 1024*1024 (bytes) = 1 MB.

 consumer.auto.commit.enable: If true, periodically commit to ZooKeeper
the offset of messages already fetched by the consumer. This committed
offset will be used when the process fails as the position from which the
new consumer will begin. Default value is true.

 consumer.auto.commit.interval.ms: The frequency in milliseconds at which
the consumer offsets are committed to ZooKeeper. Default value is
60000 (milliseconds) = 60 seconds.

 consumer.queued.max.message.chunks: Max number of message chunks
buffered for consumption. Each chunk can be up to
consumer.fetch.message.max.bytes. Default value is 10 (chunks).

 consumer.rebalance.max.retries: When a new consumer joins a consumer
group the set of consumers attempt to "rebalance" the load to assign
partitions to each consumer. If the set of consumers changes while this
assignment is taking place the rebalance will fail and retry. This setting
controls the maximum number of attempts before giving up. Default value
is 4 (retries).

 consumer.fetch.min.bytes: The minimum amount of data the server should
return for a fetch request. If insufficient data is available the request will
wait for that much data to accumulate before answering the request.
Default value is 1 (byte).

 consumer.fetch.wait.max.ms: The maximum amount of time the server will
block before answering the fetch request if there isn't sufficient data to
immediately satisfy consumer.fetch.min.bytes. Default value is 100

(milliseconds).

 consumer.rebalance.backoff.ms: Backoff time between retries during
rebalance. Default value is 2000 (milliseconds) = 2 seconds.

 consumer.refresh.leader.backoff.ms: Backoff time to wait before trying to
determine the leader of a partition that has just lost its leader. Default
value is 200 (milliseconds).

 consumer.auto.offset.reset: What to do when there is no initial offset in
ZooKeeper or if an offset is out of range:

o smallest: automatically reset the offset to the smallest offset

o largest: automatically reset the offset to the largest offset

o anything else: throw exception to the consumer

Default value is largest.

 consumer.consumer.timeout.ms: Throw a timeout exception to the
consumer if no message is available for consumption after the specified
interval. Default value is -1 (never throw a timeout exception).

 consumer.client.id: The client id is a user-specified string sent in each
request to help trace calls. It should logically identify the application
making the request. Default value is the value of the consumer.group.id
property.

 consumer.zookeeper.session.timeout.ms: ZooKeeper session timeout. If
the consumer fails to heartbeat to ZooKeeper for this period of time it is
considered dead and a rebalance will occur. Default value is 6000

(milliseconds) = 6 seconds.

41

 consumer.zookeeper.connection.timeout.ms: The max time that the client
waits while establishing a connection to ZooKeeper. Default value is 6000

(milliseconds) = 6 seconds.

 consumer.zookeeper.sync.time.ms: How far a ZooKeeper follower can be
behind a ZooKeeper leader. Default value is 2000 (milliseconds) = 2

seconds.

Please see http://kafka.apache.org/documentation.html#consumerconfigs for
more details on the consumer properties.

Below is an example of an adapter.properties file:

Figure 3 - Example of adapter.properties file

3.5.3 hazelcast.xml file

The hazelcast.xml file defines how an UMB adapter interacts with the UMB

Framework with regards to Hazelcast.

This file is a standard Hazelcast XML configuration file. Please refer to Hazelcast
documentation at URL: http://hazelcast.org/documentation/ for more information
on how to configure this file.

There are several sections (XML elements) that can be present in the
hazelcast.xml file inside the root <hazelcast>…</hazelcast> section.

Among these sections are these following (non-exhaustive list):

 A <network>…</network> section that defines how to connect to

Hazelcast, what protocol or port to use, whether to use encryption, etc…

 An <executor-service>…</executor-service> section that

defines the properties of the Hazelcast Executor Service used to execute
actions in the UMB Framework

Other sections than the <network>…</network> and <executor-
service>…</executor-service> sections are available. For a complete list

of all available sections, please refer to: http://hazelcast.org/documentation/.

http://kafka.apache.org/documentation.html#consumerconfigs
http://hazelcast.org/documentation/
http://hazelcast.org/documentation/

42

The <network>…</network> section defines how to connect to Hazelcast,

using either5:

 IP multicast

 TCP-IP

To connect to Hazelcast using IP multicast, you need to define a
<multicast>…</multicast> section inside the <join>…</join> section
of the <network>…</network> section. For example:

 <multicast enabled="true">

 <multicast-group>224.2.2.3</multicast-group>

 <multicast-port>54327</multicast-port>

 </multicast>

To connect to Hazelcast using TCP-IP, you need to define a <tcp-ip>…</tcp-
ip> section inside the <join>…</join> section of the <network

>…</network> section. For example:

 <tcp-ip enabled="true">

 <interface>localhost</interface>

 </tcp-ip>

The <network>…</network> section also defines what ports to use in the

<port>…</port> section. By default, Hazelcast cluster members (each UMB
Adapter is a Hazelcast cluster member) use port numbers starting at 5701: 5701,

5702, 5703, …:

 <port auto-increment="true" port-

count="100">5701</port>

The <executor-service>…</executor-service> section defines the

properties of the Hazelcast Executor Service used to execute actions in the UMB
Framework. In this section you can define how many threads are used for
processing actions by the UMB Adapter by setting the value of the <pool-
size>…</pool-size> XML element. You can also define the size of the action

request queue by setting the value of the <queue-capacity>…</queue-
capacity> XML element:

 <executor-service name="default">

 <pool-size>7</pool-size>

 <!--Queue capacity. 0 means Integer.MAX_VALUE.-->

 <queue-capacity>0</queue-capacity>

 </executor-service>

5 It is also possible to connect using Amazon Web Services (for connecting to Amazon

Cloud Services)

43

Below is an example of a hazelcast.xml file:

Figure 4 - Example of hazelcast.xml file

3.5.4 log4j.xml file

The log4j.xml file is the Log4J configuration file for the whole UMB adapter

application. It is a standard Apache Log4J configuration file.6

This file contains three main sections where the following items are defined:

 Appenders: appenders mainly define where the log messages are sent, and
the pattern used for logging the messages. There is one appenders
defined by default:

o CONSOLE: for logging to the console

o FILE: for logging to the ${UMB_<adapter name in upper
case>ADAPTER_DATA}/logs/<adapter name>-

adapter.log file (for example: /var/opt/UMB/file-

adapter/logs/file-adapter.log for the File adapter)

If you want to log to a file for example, you can add an appender to do just
this.

 Loggers: loggers are defined by Java package names. Each logger defines its
own log level and appender references.

 Root: the root section defines the default log level and the default appender
references to use for logging

6 Please see http://logging.apache.org/log4j/1.2/ to learn more about Apache Log4J

configuration files.

http://logging.apache.org/log4j/1.2/

44

You can make your own changes to the log4j.xml file, for example:

 Modifying existing appenders or creating new ones

 Modifying existing loggers: changing the log level or the appender
references

 Adding new loggers, for 3rd party products for example

 Modifying the default log level and appender references in the root section
of the file

Once you have made changes to the log4j.xml file, you will need to restart the

either need to restart UMB adapter.

Log files are stored in the ${UMB_<adapter name in upper
case>ADAPTER_DATA}/logs directory (for example: /var/opt/UMB/file-

adapter/logs for the File adapter).

3.6 TeMIP Adapter Specific configuration
The TeMIP Adapter provides action and collection flow services to/from TeMIP.

As a Flow producer, the adapter will:

 Respond to collection flow actions for dynamic flows (CreateFlow,

DeleteFlow, ResynchFlow) and static flows (ResynchFlow) from other UMB

Adapters

 Automatically start static flows defined in the TeMIP Adapter’s configuration file:
AdapterConfiguration.xml

As an action services provider, the adapter will:

 Respond to action execution requests from other UMB Adapters, i.e.:

o Alarm Object directives

o Trouble Ticket directives

o Any directive using the PassthroughAction

The TeMIP Adapter is composed of:

 An Adapter start script

 Configuration files:

o The Adapter properties file: adapter.properties that defines

properties for the adapter including connection information for
Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines

how to connect to the UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that

defines the flows and actions provided by the adapter

o One or more TeMIP configuration files: named
TeMIP_configuration.xml or not that defines the connection to

45

TeMIP. TeMIP configuration files are associated with collection flows in the
AdapterConfiguration.xml file. Each collection flow can use a

different TeMIP configuration file or all flow can use the same file or
anything in between.

o One or more axis2.xml (the name and path of the file is configurable in
the TeMIP_configuration.xml file) TWS configuration files that

define the configuration for connecting to TWS. Each
TeMIP_configuration.xml file can have a different TWS

configuration file.

 Library files that define the Adapter’s behavior

The following figure explains the overall architecture of the TeMIP Adapter.

Figure 5 - TeMIP adapter overview

In the above figure, the TeMIP Adapter is used to produce alarm collection flows
from TeMIP to the Unified Mediation Bus. Both static and dynamic flows are
supported. The TeMIP Adapter can also respond to collection flow actions and
TeMIP Alarm Object directives actions from UMB.

The following sections will explain how to configure the TeMIP Adapter.

3.6.1 TeMIP Adapter Installation

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to install the TeMIP Adapter: see Chapter 3 “Unified Mediation
Bus Adapters”.

3.6.2 TeMIP Adapter Configuration

The configuration files of the TeMIP Adapter are located in the <TeMIP Adapter
installation directory>/conf folder. Each of the configuration files is

explained in detail below.

46

3.6.2.1 The adapter.properties file

The Adapter properties file: adapter.properties defines properties for the

adapter including connection information for the UMB Kafka/ZooKeeper
instance(s).

The following properties are defined by default in this file:

 producer.metadata.broker.list: a list of Kafka broker <host>:<port>

information. Set to localhost:9092 by default

 producer.request.required.acks: set to 1 by default, indicating that Kafka is in a

mode where messages are acknowledged

 consumer.zookeeper.connect: a list of ZooKeeper <host>:<port> information.

Set to localhost:2181 by default

 consumer.zookeeper.session.timeout.ms: set to 6000 by default

 consumer.zookeeper.sync.time.ms: set to 203 by default

 consumer.auto.commit.interval.ms: set to 1000 by default

 consumer.auto.offset.reset: set to smallest by default

 uca.collection.rawCollectionQueueSize: size of the raw event collection queue
used to store raw events during resynchronization. Set to 10000 by default

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to configure the adapter.properties file.

3.6.2.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to

connect to the UMB Hazelcast instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to configure the hazelcast.xml file.

3.6.2.3 The log4j.xml file

The Adapter’s Log4j configuration file: log4j.xml

3.6.2.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the flows

and actions provided by the adapter.

47

Figure 6 - The TeMIP Adapter’s AdapterConfiguration.xml file

In the <flowServices>…</flowServices> section, the collection flows

produced by the TeMIP Adapter must be declared. Collection flows can either be
static or dynamic.

By default, one static flow is defined that uses the
TeMIP_configuration.xml file. This file contains connection information to

TeMIP as well as the list of Operation Contexts that are part of the collection flow,
some options, and the list of Custom Alarm Object fields to use.

Flow collections (both dynamic and static flows) can be added or removed by
editing the <flowServices>…</flowServices> section.

Please refer to the [R1] Unified Mediation Bus - Adapter Development Guide for
learning how to add producer collection flow services.

In the <actionServices>…</actionServices> section, the action services

proposed by the TeMIP Adapter are declared. These services include action services
for executing:

 Alarm Object directives using the AOAction action (that can process any AO directive
except GETCHILDRENALARMS, GETPARENTALARMS, GETVARSELECTOR, or
SUMMARIZE which are not yet implemented) or any of the Directive specific actions:

o AOAction_Acknowledge

o AOAction_Addparent

o AOAction_Archive

o AOAction_Clearalarm

o AOAction_Close

o AOAction_Create

o AOAction_Delete

48

o AOAction_Demote

o AOAction_Dump

o AOAction_Getevent

o AOAction_Groupalarms

o AOAction_Handle

o AOAction_Release

o AOAction_Removeparent

o AOAction_Renameentity

o AOAction_Set

o AOAction_Show

o AOAction_Terminate

o AOAction_Unacknowledge

o AOAction_Unclearalarm

o AOAction_Undoterminate

o AOAction_Ungroupalarms

o AOAction_Ungroupall

 Trouble Ticket directives using the TTAction action (that can process any TT
directive) or any of the Directive specific actions:

o TTAction_AssociateTT

o TTAction_CancelTT

o TTAction_ClearAll

o TTAction_CloseTT

o TTAction_Create

o TTAction_CreateTT

o TTAction_Delete

o TTAction_Deregister

o TTAction_Directory

o TTAction_DisplayAssociatedTt

o TTAction_DisplayRelatedTt

o TTAction_DissociateTT

o TTAction_RebuildAll

o TTAction_Register

o TTAction_Set

o TTAction_Show

o TTAction_Synchronize

o TTAction_Test

 Any directive using the PassthroughAction action

In order to execute an AOAction for example, the following code can be used:

49

Figure 7 - Executing an Alarm Object directive action on TeMIP Adapter

The above screen capture shows how to execute an Alarm Object directive on TeMIP
Adapter when TWS is in the “No Security” mode (the default mode).

To execute a TTAction, the following code can be used:

Figure 8 - Executing a Trouble Ticket directive action on TeMIP Adapter

The above screen capture shows how to execute a Trouble Ticket directive on TeMIP
Adapter when TWS is in the “User Password Clear” mode.

50

To execute a PassthroughAction, the following code can be used:

Figure 9 - Executing a Passthrough action on TeMIP Adapter

The above screen capture shows how to execute a Passthrough action on TeMIP
Adapter. With Passthrough actions, the XML code of the directive to execute is put
directly in the rawData of the actionQuery.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to configure the AdapterConfiguration.xml file.

3.6.2.5 The TeMIP configuration file(s)

The TeMIP configuration file: usually named TeMIP_configuration.xml, if

there is only one such file, defines how to connect to TeMIP. Each collection flow
defines which TeMIP configuration file to use: this is done in the
AdapterConfiguration.xml file. As a consequence, you can possibly have

multiple TeMIP configuration files in the TeMIP Adapter.

51

Figure 10 - Example of a TeMIP configuration file

Each TeMIP configuration file contains the same type of information. It is necessary
to configure the TeMIP configuration file to fit both your needs and your TeMIP
configuration. The main sections are the following:

Authentication information

In case TWS is setup in either “User Password Clear” or “User Password Encrypted”
security modes (Please see TWS documentation for more information on how to set
up TWS in either of these modes), the
<Authentication>…</Authentication> section allows you to configure

the username and password to use for connecting to TWS:

 UserName: by default this element is set to temip. Please set this username
to a valid unix account username to be used for connecting to TWS. The
unix account has to be valid on the server hosting TWS.

 Password: by default this element is set to TeMIP. Please set this password
to the correct password of the unix account mentioned in the
<UserName>…</UserName> section.

If TWS is setup in the “No Security” security mode, then the username and
password listed in this section are not used for connecting to TWS, since the “No
Security” mode does not use usernames and passwords.

Axis information

The <Axis>…</Axis> section contains the path to the axis2.xml file
associated with the TeMIP_configuration.xml file being configured:

 XmlPath: by default this element is set to conf/axis2.xml.

TeMIP/TWS information

In order to properly configure its connection to TeMIP, a TeMIP collection flow must
be told which TeMIP director to connect to. This is done by configuring

the <DirectorConfiguration>…</DirectorConfiguration> section

of the TeMIP configuration file. Please validate that the information inside this
section is correct with regards to your TeMIP/TWS setup.

You should pay special attention to the following elements:

 MachineName: by default this element is set to localhost. If your TeMIP

director is not located on the local host, please update the value of this
element accordingly with the host name (or IP address) of your TeMIP
director

 TeMIPDirectorEntity: Please verify that the value of this element matches
your TeMIP director entity name (execute manage show temip "*"

on your TeMIP director host to get the TeMIP director entity name)

 TWSServerPort: this element is set to 7180 by default, which is the default

TWS port number. Please verify that the value of this element matches
your TWS configuration

52

Below is an example of the
<DirectorConfiguration>…</DirectorConfiguration> section of the
TeMIP_configuration.dynamic.xml file:

<DirectorConfiguration>

<MachineName>mytemip.mycompany.com</MachineName>

<!-- Put here TeMIP director name.

 If you leave this field as is, dynamic flows

operations will not work -->

<TeMIPDirectorEntity>.temip.mytemip_temip</TeMIPDirect

orEntity>

<TWSServerPort>7180</TWSServerPort>

</DirectorConfiguration>

Figure 11 - Example of TeMIP/TWS configuration in the
TeMIP_configuration.dynamic.xml file

Below is an example of how to verify the TeMIP director entity name of your TeMIP
director (the command below has to be executed on the TeMIP director host):

manage show temip "*"

TeMIP Framework (V6.0.0)

Using default ALL IDENTIFIERS

TEMIP mytemip_ns:.temip.mytemip_temip
On director: mytemip_ns:.temip.mytemip_director
AT Wed, Aug 7, 2013 03:17:31 PM Identifiers

Examination of attributes shows
 TeMIP Name =
mytemip_ns:.temip.mytemip_temip

Figure 12 - How to query the TeMIP director entity name

Operation Context information

In order to properly configure a TeMIP collection flow, the list of Operation Contexts
to use as part of the collection flow is needed. This can be specified in the
<OperationContexts>…</OperationContexts> section:

Figure 13 - How to specify the Operation Context(s) in the TeMIP configuration
file

It is possible to specify more than just one Operation Context.

53

The TeMIP Adapter processes only Aggregate Events as specified by the
<AggregateEvent>true</AggregateEvent> section. Please make sure

that the Operation Contexts that you list in the
<OperationContexts>…</OperationContexts> section are defined to

emit aggregate events, otherwise the TeMIP Adapter won’t work properly.

Alarm Object custom fields

The TeMIP configuration file is also the place where you need to declare any Alarm
Object custom attributes that you want the TeMIP Adapter to use. Alarm collections
created by the TeMIP Adapter will contain all the custom fields declared in the
TeMIP configuration file.

Alarm Object custom attributes are to be declared in the
<CustomAttributes>…</CustomAttributes> section of the file.

To add a new Alarm Object custom attributes, you need to add a
<CustomAttribute>…</CustomAttribute> section inside the
<CustomAttributes>…</CustomAttributes> section of the file.

Figure 14 - Adding a custom AO attribute in the
TeMIP_configuration.dynamic.xml file

3.6.2.6 The axis2.xml configuration file(s)

The AXIS2 configuration file: usually named axis2.xml, if there is only one such

file, defines how to connect to TWS.

Each TeMIP configuration file defines which axis2.xml file to use: this is done in
the TeMIP_configuration.xml file. As a consequence, you can possibly have

multiple AXIS2 configuration files in the TeMIP Adapter.

54

Figure 15 - Example of an axis2.xml configuration file

Each AXIS configuration file contains the same type of information. It is usually not
necessary to modify this file, unless you want to modify the security mode used to
connect to TWS. By default, the axis2.xml file delivered with the TeMIP Adapter
is set to the “No Security” mode. The list of possible security modes is the
following:

 “No Security” mode
 “User Password Clear” mode
 “User Password Encrypted” mode

There are several sections in this file. The section that deals with the TWS security
mode is the OutflowSecurity parameter section. In “No Security” mode, the
<items>…</items> section is empty: <items></items>, whereas in “User

Password Clear” mode, the <items>…</items> section contains
“UsernameToken”: <items>UsernameToken</items>

The “User Password Encrypted” mode is not yet supported by the TeMIP Adapter.

3.7 OSSAF Adapter
The OSSAF Adapter provides actions services to the OSS Analytics Foundation
(OSSAF). It translates UMB actions into calls to the OSSAF REST API. The results of
such calls are given back to the caller though a specific class
com.hp.umb.ossaf.api.Reply, which is provided in a separate jar file.

3.7.1 Specific properties

The OSSAF Adapter configuration file adapter.properties defines all

properties supported by the OSSAF Adapter.

In particular, properties below are specific:

url.connection.timeout Defines the timeout value, in milliseconds,
to use when establishing the connection
with the OSSAF server. Default is 10000.

url.connection.retry Defines the maximum number of
connections to attempt for establishing the
connection with the OSSAF server.

3.7.2 Specific configuration

The OSSAF Adapter configuration file AdapterConfiguration.xml defines

all actions supported by the OSSAF Adapter.

It is up to the project integrator to correctly set up this configuration file to fit the
project specific needs.

3.7.2.1 Configuring a query fact values request

The OSSAF adapter defines a generic query for such purpose:

55

 <action name="queryFactValues" inherits="query"
 actionClass="com.hp.umb.ossaf.adapter.Actions">

This query should not be changed. Integrator should define more specific queries
for OSSAF Adapter client needs by inheriting this query and setting particular
parameters for its DB.

For example:

<action name="queryTest1" inherits="queryFactValues"
actionClass="com.hp.umb.ossaf.adapter.Actions">
<parameters>
<parameter key="fact" mandatory="true" occurs="many"
defaultValue="ACKDURATION" />
<parameter key="dim" occurs="many"
defaultValue="IDENTIFIER/SEVERITYNAME" />
<parameter key="begin" mandatory="true"
defaultValue="20150402-120000"/>
<parameter key="end" defaultValue="20150404-000000"/>
<parameter key="offset" defaultValue="0"/>
<parameter key="batchsize" defaultValue="100"/>
<parameter key="aggreg" defaultValue="0"/>
</parameters>
</action>

3.7.2.2 Configuring a query distinct dimension values request

The OSSAF adapter defines a generic query for such purpose:

 <action name="queryDistinctDimensionValues"
inherits="queryDimensionValues"
actionClass="com.hp.umb.ossaf.adapter.Actions">

This query should not be changed. Integrator may define more specific queries for
OSSAF Adapter client needs by inheriting this query and setting particular
parameters for its DB.

For example:

<action name="queryTest3"
inherits="queryDistinctDimensionValues"
actionClass="com.hp.umb.ossaf.adapter.Actions">
<parameters>
<parameter key="dim" defaultValue="PROBABLECAUSENAME" />
<parameter key="offset" defaultValue="0"/>
<parameter key="aggreg" defaultValue="0"/>
</parameters>
</action>

3.7.2.3 Configuring a query matching dimension values request

The OSSAF adapter defines a generic query for such purpose:

 <action name="queryMatchingDimensionValues"

56

 inherits="queryDimensionValues"
 actionClass="com.hp.umb.ossaf.adapter.Actions">

This query should not be changed. Integrator may define more specific queries for
OSSAF Adapter client needs by inheriting this query and setting particular
parameters for its DB.

For example:

<action name="queryTest4"
inherits="queryMatchingDimensionValues"
actionClass="com.hp.umb.ossaf.adapter.Actions">
<parameters>
<parameter key="dim" defaultValue="DOMAINNAME" />
<parameter key="pattern" defaultValue="*ossv040*" />
<parameter key="batchsize" defaultValue="100"/>
<parameter key="aggreg" defaultValue="0"/>
</parameters>
</action>

3.7.2.4 Configuring a query for dimension value lookup request

The OSSAF adapter defines a generic query for such purpose:

 <action name="queryLookupDimensionValue"
inherits="query"
actionClass="com.hp.umb.ossaf.adapter.Actions">

This query should not be changed. Integrator may define more specific queries for
OSSAF Adapter client needs by inheriting this query and setting particular
parameters for its DB.

For example:

<action name="queryTest5"
inherits="queryLookupDimensionValue"
actionClass="com.hp.umb.ossaf.adapter.Actions">
<parameters>
<parameter key="dim" defaultValue="IDENTIFIER" />
<parameter key="keyValue" defaultValue="hello" />
<parameter key="aggreg" defaultValue="0"/>
</parameters>
</action>

3.7.2.5 Configuring OSSAF Adapter on multiple servers

OSSAF Adapter has the capability to be deployed on multiple servers, as it is by
default configured to use the grouping mechanism of UMB adapters.

All OSSAF adapters (within a same hazelcast cluster) are indeed reachable by
targeting the “OSSAF” name.

But as any UMB adapter should require a unique name, you will have to change the
name of your OSSAF adapters manually. This is done by modifying the attribute
name of the adapter (by default it is “OSSAF-x”).

57

<adapter name="OSSAF-x" actionGroup="OSSAF" …

3.7.3 Deploying OSSAF Adapter as an EJB

OSSAF Adapter comes with an EJB packaged in
$UMB_OSSAFADAPTER_HOME/lib/umb-ossaf-ejb-<version>.jar.

The above jar file is an EJB 3.1 compliant and requires a Java EE 6 platform to be
deployed on.

In the specific case of JBoss AS 7.x or JBoss EAP 6.x, OSSAF Adapter package brings
the JBoss Modules needed by the OSSAF Adapter EJB, available under
$UMB_OSSAFADAPTER_HOME/jboss/modules.

To deploy the OSSAF Adapter EJB on JBoss EAP 6.x:

 Copy all modules into your $JBOSS_HOME/modules, for instance:

 # cp -r $UMB_OSSAFADAPTER_HOME/jboss/modules/*

$JBOSS_HOME/modules

 Copy EJB into your JBoss server deployment directory, for instance:

 # cp $UMB_OSSAFADAPTER_HOME/lib/umb-ossaf-ejb-

<version>.jar $JBOSS_HOME/server/deployments

That’s it. The OSSAF Adapter EJB has an automatic startup capability when it’s
deployed on Java EE 6.

3.7.4 Writing an OSSAF Adapter client

In order to develop an OSSAF Adapter client, user needs to have the OSSAF API in its
classpath in order to understand the object returned by the action call.

Such object is returned through the rawData field of the UMB ActionReply.

It is defined in umb-ossaf-api.jar part of the libraries delivered with OSSAF Adapter.

Example of code of a Junit test:

import com.hp.umb.ossaf.api.Reply;

public class MyClientClassTest {

…

@Test
public void testQueryTest1AndReply() throws Exception {

 ActionQuery actionQuery = new ActionQuery(adapter, “OSSAF”,
"queryTest1");

 actionQuery.setActionId("0001");

ActionReply actionReply = null;
try {
 actionReply = actionQuery.executeSyncAction();
} catch (Exception e) {

58

 fail(String.format("Unexpected exception thrown executing action
(id = %s): %s", actionQuery.getActionId(), e.getLocalizedMessage()));
}
assertNotNull(actionReply);
assertEquals(ActionStatus.SUCCESS, actionReply.getStatus());
Reply reply = (Reply) actionReply.getRawData();
assertNotNull(reply);
log.debug("REPLY=" + reply);

}

Note

 When delivering an UCA-EBC Value Pack that brings such OSSAF Adapter client
code, integrator will need to put umb-ossaf-api.jar under
$UCA_EBC_HOME/externallib directory (if multiple Value Packs use it) or
directly packaged within the Value Pack libraries.

3.8 UCA-EBC Adapter specific configuration

The UCA-EBC Adapter is completely embedded with the UCA-EBC application
starting from version V3.3. This means the Adapter runs in the same JVM as the
UCA-EBC process. The adapter part is instantiated at UCA-EBC startup.

The UCA-EBC Adapter, allows UCA-EBC

 producing events to Static Unified Mediation Bus flows, thanks to a specific UMB
Alarm Forwarder,

 producing events to Dynamic Unified Mediation Bus flows through the UCA Event
DB facility,

 collecting events from Unified Mediation Bus flows,

 performing actions through the Unified Mediation Bus actions service.

This can be represented as follow:

59

Figure 16 - UCA-EBC adapter architecture

3.8.1 UCA-EBC Adapter Configuration

The configuration requirements of the UCA-EBC Adapter are the same as any other
adapters. It requires a properties file to set the Adapter properties, the
Hazelcast.xml file for the Common registry access, and the
AdapterConfiguration.xml file to define the provided services.

All the requested configuration files are searched in the UCA-EBC configuration
directory: ${UCA_EBC_DATA}/conf.

3.8.1.1 The properties file

Has the UCA-EBC UMB Adapter is embedded in the UCA-EBC application, there no
specific adapter.properties file for this adapter. Instead the properties are

defined in the standard uca-ebc.properties file.

The following properties are defined by default in this file as follow:
###

UMB Mediation properties

use.new.generation.adapter=true

UMB Consumer properties

consumer.zookeeper.connect=localhost:2181

consumer.zookeeper.session.timeout.ms=6000

consumer.zookeeper.sync.time.ms=203

consumer.auto.commit.interval.ms=1000

consumer.auto.offset.reset=smallest

UMB Consumer properties

producer.metadata.broker.list=localhost:9092

producer.request.required.acks=1

###

60

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to configure the Adapter’s properties.

3.8.1.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to

connect to the UMB Hazelcast instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide
for details on how to configure the hazelcast.xml file.

3.8.1.3 The logging configuration file

The Adapter’s Log4j configuration is done through the standard UCA-EBC
configuration file: uca-ebc-log4j.xml

3.8.1.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the

Event flows that UCA-EBC provides.

Has for any other UMB Adapters the AdapterConfiguration.xml file defines

the adapter name (by default set to “UCA-EBC”). This name must be changed if the
solution is made of several UCA-EBC servers.

Defining static flows:

For static Flows the collectorClass must be set to:
com.hp.uca.expert.mediation.adapter.UcaStaticCollector

No flow parameters need to be defined.

Here is an example of Static Flow Service definitions for UCA-EBC:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0"

xmlns="http://hp.com/umb/config">

 <flowServices>

 <flow name="UcaStaticForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCo

llector">

 </flow>

 <flow name="UcaStaticEventForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCo

llector">

 </flow>

 </flowServices>

</adapter>

Note

The static flows provided by UCA-EBC do not support resynchronization.

Defining dynamic flows:

For dynamic Flows the collectorClass must be set to the right collector class
extending
com.hp.uca.expert.mediation.adapter.UcaDynamicCollector

The flow parameters need to be defined.

61

Here is an example of a Dynamic Flow Service definition for UCA-EBC:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0"

xmlns="http://hp.com/umb/config">

 <flowServices>

 <flow name="DB-Flow" type="Dynamic"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaDbCollec

tor">

 <parameters>

 <parameter key="vp" defaultValue="" />

 <parameter key="notifier" defaultValue="dbNotifier" />

 <parameter key="summarize" defaultValue="false" />

 <parameter key="eligibilityScope" defaultValue="true"

/> </parameters>

 </flow>

 </flowServices>

</adapter>

3.8.2 UCA-EBC value pack configurations

3.8.3 Configuring a value pack for collecting events from an UMB
flow

Each UCA-EBC value pack can be configured to collect events from UMB event flows
provided by some distant UMB adapter Flow Providers.

Such configuration is made in the ValuePackConfiguration.xml file of the

value pack in the ‘mediationFlows’ section.

An UMB consumer flow is defined with the Tag “UMBmediationFlow” has in the
example below:
<mediationFlows>

 <UMBmediationFlow name="TeMIPflowOnOc1"

 targetAdapterName="TeMIP"

 targetFlowName="temipFlow1"

 automaticStart="true">

 <flowParameters>

 <flowParameter key="operationContext" value="OC1"/>

 </flowParameters>

 </UMBmediationFlow>

 <UMBmediationFlow name="SmartFlow"

 targetAdapterName="SMART"

 targetFlowName="smartFlow1"

 automaticStart="true"/>

</mediationFlows>

In this section, each UMBmediationFlow is defined specifying the following
attributes:

 name: this is the local flow name.

62

 targetAdapterName: is the identifier of the adapter providing the production
flow service

 targetFlowName: is the name of the flow definition on the target Adapter

 automaticStart: can be ‘true’ or ‘false’. Indicates if the flow must be started
along with the value pack. If omitted, the default value is ‘true’. When set to
false, the flow is not started at VP startup; it will have to be started manually
from the GUI to become active.

Some flow creations require parameters to be provided (expected by the producer
side). Flow parameters are defined in the <flowParameters> section of the
UMBmediationFlow. Each parameter is a key/value pair defined with the

<flowParameter> Tag with the following attributes:

 key: the parameter name

 value the parameter value

3.8.4 Forwarding Alarms to UMB through Static flows

One of the roles of the value packs is to forward correlation results (whatever their
types: Alarms, Trouble tickets, events…) to some other applications.

From a scenario this is done by using an UMBForwarder object that makes the link
between the scenario and the UCA-EBC flow service as defined in the
AdapterConfiguration.xml file.

An UMBEventForwarder object can be easily created by requesting its creation from
the value pack’s Spring context (context.xml in the valuepack configuration

directory).

Here is an example of UMBEventForwarder creation:
<bean name="mediationEventForwarder"

class="com.hp.uca.expert.event.UMBEventForwarder">

 <constructor-arg index="0">

 <value>UcaStaticEventForwarderFlow</value>

 </constructor-arg>

</bean>

The UMBEventForwarder object is created with an argument which is the name of
the static flow as it is define in the UCA-EBC AdapterConfiguration.xml file.

Then from a rule file, this UMBEventForwarder object can be used as follow:

1. Define the object in the rule file ‘global section’

2. Use the UMBEventForwarder push() method to forward an event to the bus.

Example of rule forwarding an event to the bus:

63

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes here.

import com.hp.uca.expert.event.EventForwarder;

import com.hp.uca.expert.event.Event;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.util.MessageFileHandler;

import java.util.ArrayList;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import

com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here

global Scenario theScenario;

global EventForwarder mediationEventForwarder;

Forward any event received

rule "Forward any event received"

no-loop

 when

 $event : Event()

 then

 LogHelper.enter(theScenario.getLogger(),

drools.getRule().getName());

 // Forward the event to ne new Mediation

 mediationEventForwarder.push($event);

 // Retract the event

 theScenario.getLogger().info("Retracting: \n"+

$event.toFormattedString());

 theScenario.getSession().retract($event);

 LogHelper.exit(theScenario.getLogger(),

drools.getRule().getName());

end

3.8.5 Forwarding Alarms to UMB through Dynamic flows

Starting V3.3, it is possible to use a UCA to UMB dynamic flow to retrieve alarms
stored in a Database.

Please refer to the “UCA for EBC Reference Guide”

64

Chapter 4

Unified Mediation Bus Adapter
Development Kit

The Unified Mediation Bus Adapter Development Kit is running and supported on
Windows and Linux. It is delivered as follows:

On Windows XP/Vista 64 bits, Windows 7 64 bits, Windows Server 2012:

 umb-adapter-dev-package-1.0-msi.zip

On Linux:

 umb-adapter-dev-package-1.0-linux.tar

This chapter describes the software prerequisites, the installation steps, and gives
a brief content description of the UMB Adapter Development kit.

4.1 Licensing
Please refer to Chapter 2.1 “Licensing” for more information on UMB Development
Kit licensing.

4.2 Disk requirements
Here are the disk requirements for the UMB Development Kit:

Type Disk requirements

Installation time
temporary disk space

40 MB minimum:

 20 MB minimum for the umb-adapter-dev-
package-1.0 archive file

 20 MB minimum for files expanded from the umb-
adapter-dev-package-1.0 archive file)

Permanent disk space 20 MB minimum for UMB Development Kit V1.0
installed on the system

Table 12 - Disk Requirements for UMB Development kit

4.3 Software prerequisites

4.3.1 Java

UMB V1.0 Adapter Development Toolkit requires Java JDK 1.7.

65

Software Version
Java JDK 7 1.7.0.00 (or later)

Table 13 - Software Prerequisites for UMB Adapter Development Kit

The JAVA_HOME environment variable must be set before using UMB Development
Kit:

On Windows:

In the Control Panel, Open System Properties, open the Advanced tab and click
Environment Variables, then set the JAVA_HOME environment variable according

to the location of your JDK:

Figure 17 - Setting the JAVA_HOME environment variable on Windows systems

In case Java is not yet installed on your system, the latest JDK package for
Microsoft Windows operating systems can be downloaded (for free) from
http://java.com/en/download/manual.jsp.

On Linux:

Depending on your shell, and the location of the Java JDK software, please use one
of the following commands to set the JAVA_HOME environment variable:

Example for csh-like shell:

$ setenv JAVA_HOME /opt/java/jdk1.7.0_51

Example for sh-like shell:

$ export JAVA_HOME=/opt/java/jdk1.7.0_51

To check if you already have Java installed:

$ rpm –qa | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an
output similar to the following:

http://java.com/en/download/manual.jsp

66

java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from
Oracle from http://java.com/en/download/manual.jsp. If this is installed (usually
under /usr/java), you should get an output similar to the following:

jdk-1.7.0_51-fcs.x86_64

4.4 Unified Mediation Bus Adapter Development Kit
installation

4.4.1 Product Installation

On Windows:

Install the UMB Adapter Development Kit by executing the UMB-DEVTOOLKIT-V1.0-
0A.msi file.

Figure 18 - Installing UMB Adapter Development Kit

By default, the UMB Adapter Development Kit is installed in the C:\UMB-DEV

directory.

The installer automatically creates/updates some environment variables such as:

 The system’s PATH environment variable is updated in order to make 3rd
party product executables (i.e. Apache Ant) easily available

 The UMB_DEV_HOME environment variable that stores the UMB Adapter
Development Kit root directory (by default C:\UMB-DEV)

http://java.com/en/download/manual.jsp

67

Note

On Windows, you must open a new CMD.EXE window in order to benefit from the
new/updated environment variables.

On Linux:

 Un-tar the archive in a temporary directory:

As root user, un-tar the archive in a temporary local directory (For example:
/tmp):

$ cd /tmp

$ tar -xvf <kit location>/umb-adapter-dev-package-1.0-

linux.tar

 Run the installation script

Depending on whether you wish to install the UMB Adapter Development Kit at
the default location, i.e. /opt/UMB-DEV, or in an alternate location, run either

of the following commands to execute the installation script.

To install UMB Adapter Development Kit at the default location (in /opt/UMB-

DEV directory), please execute the following command as root user:

$ install-umb-dev.sh

To install the UMB Adapter Development Kit at an alternate location of your
choosing, please execute the following command as root user:

$ install-umb-dev.sh –r <Alternate root directory>

 Post-installation setup : setting the environment variables:

The UMB Adapter Development Kit on Linux requires the UMB_DEV_HOME
environment variable to be set in order to work properly.

For that purpose, the UMB Adapter Development Kit installation script installs
two files in the UMB Adapter Development Kit root directory:

By default:

 /opt/UMB-DEV/.adapterdev_environment.sh

 /opt/UMB-DEV/.adapterdev_environment.csh

These files can be used for setting the correct environment variables for the
user account(s) that will be using the UMB Adapter Development Kit.

Depending on your shell, use one of the following commands to set the UMB
Adapter Development Kit environment variables and update the path:

On csh-like shell:

$ source /opt/UMB-DEV/.adapterdev_environment.csh

On sh-like shell:

$. /opt/UMB-DEV/.adapterdev_environment.sh

68

Note

Installing UMB Adapter Development kit as non-root user (Linux only):

For testing purpose (or for some very specific needs) the UMB Adapter
Development Kit package can be installed by a non-root user. This feature is
available for Linux only.

When installing UMB Adapter Development Kit as non-root user, the following
limitations must be understood and acknowledged:

1. The system RPM database is not accessible by a non-root user. As a
consequence, when installation is performed by a non-root user, a specific RPM
database must be specified. The default RPM repository for non-root
installation is set to ~/.rpmdb (where ~ is the user home directory).
This directory can be overridden by specifying the --rpmdbpath option as

installation script argument.

2. The UMB Development Kit root directory must be read/write accessible by the
non-root user. Usually the default /opt/UMB-DEV directory cannot be used

(unless some specific rights have been set by the administrator). As a
Consequence, when installation is performed by a non-root user, the –r option

must be specified.

3. When installed by the non-root users the UMB Development Kit files are owned
by the user who performed the installation.

4.4.2 Files organization

The UMB Adapter Development Kit is installed under the %UMB_DEV_HOME%

directory on Windows or the ${UMB_DEV_HOME} directory on Linux, which is by
default the C:\UMB-DEV directory on Windows or the /opt/UMB-DEV directory

on Linux.

The following table describes the different subdirectories.

Directories Description

3pp Contains the third party tools delivered with the
Adapter Development Toolkit (mainly ant)

adapter-examples Contains a set of Adapter examples used to
demonstrate the UMB capability in different
domains.

apidoc Contains the Javadoc of the Java classes
provided by UMB that can be used in adapter
development.

bin Contains the un-installer tool

eclipseplugin Contains the eclipse plugin and associated
template files

lib Contains the jar files required by the developed
adapters.

Table 14 - Sub-directories of UMB Adapter Development Kit installation
directory

69

4.4.3 Setting the Unified Mediation Bus Adapter Development
Toolkit environment variables (Linux
only)

Several environment variables must be defined for UMB Adapter Development
Toolkit to work properly.

For that purpose, the UMB Adapter Development Toolkit installation script installs
two files in the UMB HOME directory (/opt/UMB-DEV by default):

 .adapterdev_environment.sh

 .adapterdev_environment.csh

These files can be used for setting the correct environment variables.

Depending on your shell, use one of the following commands to set the
“hpossadm” user’s UMB environment variables and update the path:

On csh-like shell:

$ source /opt/UMB-DEV/.adapterdev_environment.csh

On sh-like shell:

$. /opt/UMB-DEV/.adapterdev_environment.sh

4.5 Un-installation of UMB Adapter Development Kit
In order to uninstall the UMB Adapter Development Kit, please follow the
instructions below:

On Windows:

5. Go to the Control Panel

6. Select “Program and Features”

7. Right-click on “HP Unified Mediation Bus Development toolkit – UMB-
DEVTOOLKIT-V1.0-0A”

8. Select “Uninstall”

On Linux:

$ /opt/UMB-DEV/bin/uninstall.sh

You should get an output similar to the following text:

Here is the list of installed UMB-DEV packages:

 [0] UMB-DEVTOOLKIT-V1.0-0A

Enter the index number of UMB-DEV version to un-install:

By entering ‘0’ (as in the example above), UMB Development Toolkit version V1.0-
0A will be removed.

70

Chapter 5

Code Signing

This Software Product from HP is digitally signed and accompanied by Gnu Privacy Guard (GnuPG)
key.

5.1 On Red Hat Enterprise Linux and HP-UX platforms
Below mentioned procedure* allows you to assess the integrity of the delivered Product before
installing it, by verifying the signature of the software packages.

Pick the signature (.sig) file shipped along with the product and use following GPG command

gpg --verify <product.sig> <product>

Example: gpg --verify VPNSVP-X51-3A.zip.sig VPNSVP-X51-3A.zip

Note: Look for the comments shown below in the command output

Good signature from "Hewlett-Packard Company (HP Code signing Service)"

==
Note: If you are not familiar with signature verification using GPG and intended to verify HP Product
signature, follow the steps given below.

1. Check whether gnupg gpg is installed on the system. If no, install gnupg gpg

2. Configure GPG for accepting HP signature. The steps are the following:
a. Log as root on your system
b. Get the hpPublicKey from following location:

https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNu
mber=HPLinuxCodeSigning and save it as hpPublicKey.pub
Note that the hpPublicKey file will be located in the root's home directory.

c. Follow the instruction found at above URL in the "Verification using GPG" section.

*HP strongly recommends using signature verification on its products, but there is no obligation.
Customers will have the choice of running this verification or not as per their IT Policies.

https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPLinuxCodeSigning
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPLinuxCodeSigning

71

Glossary

UCA: Unified Correlation Analyzer

UMB: Unified Mediation Bus

EBC: Event Based Correlation

JDK: Java Development Kit

JMS: Java Messaging Service

JMX: Java Management eXtension, used to access or process action on the UMB
product

JNDI: Java Naming and Directory Interface

JRE: Java Runtime Environment

Inference Engine: Process that uses a Rete algorithm

DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X733: Standard describing the structure of an Alarm used in telecommunication
environment

